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RNA polymerase �RNAP� is an enzyme that synthesizes a messenger RNA �mRNA� strand which is comple-
mentary to a single-stranded DNA template. From the perspective of physicists, an RNAP is a molecular motor
that utilizes chemical energy input to move along the track formed by DNA. In many circumstances, which are
described in this paper, a large number of RNAPs move simultaneously along the same track; we refer to such
collective movements of the RNAPs as RNAP traffic. Here we develop a theoretical model for RNAP traffic by
incorporating the steric interactions between RNAPs as well as the mechanochemical cycle of individual
RNAPs during the elongation of the mRNA. By a combination of analytical and numerical techniques, we
calculate the rates of mRNA synthesis and the average density profile of the RNAPs on the DNA track. We also
introduce, and compute, two different measures of fluctuations in the synthesis of RNA. Analyzing these
fluctuations, we show how the level of intrinsic noise in mRNA synthesis depends on the concentrations of the
RNAPs as well as on those of some of the reactants and the products of the enzymatic reactions catalyzed by
RNAP. We suggest appropriate experimental systems and techniques for testing our theoretical predictions.
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I. INTRODUCTION

Molecular motors �1–3� are either proteins or macromo-
lecular complexes that utilize some form of input energy
�often chemical energy� to perform mechanical work. In
many circumstances, molecular motors move collectively on
a single track in a manner that has strong resemblance with
vehicular traffic �4,5�. In recent years some minimal models
of molecular motor traffic have been developed to study their
generic features �6–9�. More detailed models for specific
motor traffic systems have also been proposed by capturing
the stochastic mechanochemistry of individual motors as
well as their steric interactions within the same model to
investigate the interplay of individual and collective dynam-
ics of the motors �10–12�. In this paper we develop such a
model for a specific class of motors for which no attempt has
been made in the past to capture their steric interactions dur-
ing trafficlike collective movements on a single track.

According to the central dogma of molecular biology, the
genetic message stored in the DNA is first transcribed into
messenger RNA �mRNA� from which it is then translated
into proteins. Polymerization of a mRNA from the corre-
sponding single-stranded DNA �ssDNA� template is carried
out by a motor called RNA polymerase �RNAP� �13–15�. In
contrast, synthesis of a protein from the corresponding
mRNA template is mediated by another motor, called ribo-
some, which translocates along the mRNA strand. The steric
interactions between the neighboring ribosomes, which si-
multaneously translocate along the same mRNA, were taken
into account in most of the theoretical models of translation
developed since the late sixties �10,16–26�. Surprisingly, in
spite of the close similarities between the template-dictated
and motor-driven polymerization of macromolecules in tran-

scription and translation, no attempt has been made in the
past to incorporate interactions of RNAPs in the theoretical
description of transcription. Instead, to our knowledge, all
the models of transcription reported so far �27–38� capture
only the stochastic mechanochemistry of the individual
RNAP motors. Cooperation and collisions between RNAP
motors is known to have nontrivial effects on the rate of
transcription �39–42�. Moreover, the possibility of the forma-
tion of queues in RNAP traffic has also been explored �43�.
In fact, if the gene is relatively short, a sufficiently long
queue of RNAPs on the ssDNA template can reduce the ac-
cessibility of the promoter sequence thereby lowering the
rate of further initiation of transcription.

The main aim of this paper is to develop a model of
RNAP traffic that incorporates steric interactions between
RNAP motors which move along the same DNA track. In
this model, we incorporate the most essential features of the
multistep mechanochemical pathway of the individual
RNAP motors by a scheme which was used earlier in Wang
et al.’s �28� model for single RNAP. The steric interaction
between the RNAPs is assumed to be hard-core repulsion.
The effects of these interactions of RNAPs are captured in
our model of mRNA synthesis in the same manner in which
the steric interactions of ribosomes were captured in a recent
model �10� of protein synthesis.

In the spirit of traffic science �44�, we define the flux to be
the average number of motors crossing a site per unit time.
Thus, flux is expressed in the units “number per second.” We
define the number density to be the average number of
RNAPs attached to the unit length of the DNA template.
Using the terminology of traffic science, we refer to the re-
lation between the flux and the number density of the
RNAPs as the fundamental diagram. We calculate the flux
and investigate its dependence on the number density of
RNAP on the DNA template as well as on some other ex-
perimentally accessible parameters of the model. Since the*debch@iitk.ac.in
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average speed of a RNAP is also a measure of the average
rate of mRNA elongation and the flux gives the total rate of
mRNA synthesis from a DNA template, our calculations pre-
dict the effects of RNAP traffic congestion on the rate of
synthesis of mRNA.

The steps of the mechanochemical cycle of a RNAP are
intrinsically stochastic and give rise to fluctuations in the
rates of synthesis of mRNA. We introduce quantitative mea-
sures of these fluctuations by drawing analogy with some
further concepts from traffic science �44�. We define the run
time T of a RNAP to be the actual time it takes to travel from
the start site to the stop site on the DNA template �i.e., the
time taken to synthesize a mRNA transcript�. Similarly, we
define the time headway � to be the time interval between the
departures of two successive RNAPs from the stop site on
the DNA template �i.e., the time interval between the
completion of the synthesis of successive mRNA tran-
scripts�. Using the stochastic model, which we develop here

for RNAP traffic, we also compute the distributions P̃T and
P� of run times and time headways, respectively.

In recent years, stochasticity in gene expression has been
probed by novel experimental techniques and the results
have inspired several theoretical models at different levels of
complexity �45�. The cell-to-cell variations in the levels of
expression of the same gene can arise from inherently intrin-
sic fluctuations in transcription and translation or from ex-
trinsic causes �46�. Since proteins are the final products of
gene expression, normally, fluctuations in the concentration
of proteins are taken as a measure of the noise in gene ex-
pression. However, the most direct way to measure transcrip-
tional noise would be to monitor the fluctuations in the syn-
thesis of mRNA transcripts �47–50�. Therefore, instead of
modeling cell-to-cell variations in the transcription of a spe-
cific gene, in this paper we study the RNAP-to-RNAP fluc-
tuations in the synthesis of mRNA from a single DNA tem-

plate. The width of the distributions P̃T and P� provide
measures of the contributions to transcriptional noise from
the intrinsic fluctuations in the steps of the mechanochemical
cycle of RNAPs on the same DNA template.

The paper is organized as follows. In Sec. II we summa-
rize the essential mechanochemical processes involved in
transcription. In the same section we also present a brief
review of some of the relevant earlier models. Our stochastic
model is developed in Sec. III. Our theoretical predictions on
flux and average density profiles, which follow from this
model under periodic and open boundary conditions, are dis-
cussed in Secs. IV and V, respectively. Our results on fluc-
tuations and transcriptional noise are presented in Sec. VI.
The experimental implications of our theoretical predictions
are discussed in Sec. VII. Finally, in Sec. VIII we summarize
our main theoretical predictions.

II. BRIEF REVIEW OF PHENOMENOLOGY
AND EARLIER MODELS

A. Essential chemomechanical processes

DNA and RNA are linear polymers whose monomeric
subunits are called nucleotides. Transcription, i.e., the pro-

cess of synthesis of mRNA from the corresponding ssDNA
template, can be broadly divided into three stages, namely,
initiation, elongation, and termination. In the initiation stage,
a RNAP recognizes the so-called “promoter sequence” on
the DNA and locally unzips the two DNA strands creating a
“bubble” whereby a ssDNA template is exposed to it. How-
ever, in this paper we are interested mainly in the elongation
of the mRNA transcript.

During elongation �51�, each successful addition of a
nucleotide to the elongating mRNA leads to a forward step-
ping of the RNAP. The RNAP, together with the DNA bubble
and the growing RNA transcript, forms a “transcription elon-
gation complex” �TEC�. The essential components of each of
the TECs are shown explicitly in the schematic depiction of
RNAP traffic in Fig. 1�a�. As reported in the literature �28�,
the typical size of a transcription bubble is about 15 nucle-
otides �i.e., about 5 nm� whereas a single RNAP covers a
DNA segment that can be as long as 35 nucleotides �i.e.,
about 12 nm�. The nontemplate DNA strand remains in
single-stranded conformation in the bubble region while an
8–10-nucleotide-long DNA-RNA heteroduplex is formed by
a part of the template DNA strand and the growing end of the
RNA �see Fig. 1�a��.

Each mechanochemical cycle of the RNAP during the
elongation stage �13,52,53� consists of several steps; the
major steps are �i� nucleoside triphosphate �NTP� binding
to the active site of the RNAP when the active site is located
at the growing tip of the mRNA transcript, �ii� NTP hydroly-
sis, �iii� release of pyrophosphate �PPi�, one of the products
of hydrolysis, and �iv� accompanying forward stepping of
the RNAP �13�. This simplified scenario, which is adequate
for our purpose here, is shown symbolically in Eq. �1� as
follows:

(a)

(b)

FIG. 1. �a� A schematic representation of RNAP traffic where
the three dashed squares represent three TECs. The solid lines con-
necting filled circles represent the two strands of the double-
stranded DNA while the string of open circles denotes the elongat-
ing RNA molecule. The dashed lines connecting the circles denote
the unbroken noncovalent bonds between the complementary sub-
units on the DNA and RNA strands. Each of the gray ovals repre-
sents the catalytic site on the corresponding RNAP. �b� A simplified
version of �a�. The DNA track for the RNAP motors is assumed to
be, effectively, a one-dimensional lattice. Each TEC has been re-
placed by a rectangular black box that can cover r lattice sites
simultaneously �r=6 in this figure�. The RNAP in each TEC can
exist in either of the two chemical states.
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TECn + NTP � TECn • NTP � TECn+1 • PPi � TECn+1.

�1�

The elongation process ends when the TEC encounters
the corresponding “termination sequence” and the nascent
mRNA is released by the RNAP.

B. Brief review of the earlier models

A stochastic chemical kinetic model was developed by
Jülicher and Bruinsma �27� to describe not only the polymer-
ization of mRNA by a RNAP, but also to account for the
effects of elastic strain in the motor. Almost simultaneously,
Wang et al. �28� developed a model that incorporated the
multistep chemical kinetics of the transcription elongation
process. Extending von Hippel’s �54–56� pioneering works
on sequence-dependent thermodynamic analysis of transcrip-
tion, Wang and collaborators �13,32� have developed a
sequence-dependent kinetic model in terms of a
transcription-energy landscape. This model has been ex-
tended further by Tadigotla et al. �35� by incorporating the
kinetic barriers erected by the folding of the mRNA tran-
script. Very recently, Bai et al. �33� have demonstrated the
predictive power of their theoretical model carrying out ex-
periment and data analysis in two stages: in the first they
estimated the model parameters from experimental explora-
tion of the response to chemical perturbations, and then in
the second stage, using these parameters, they predicted the
responses to mechanical perturbations. But, as stated in the
Introduction, none of these models incorporate steric interac-
tions between the RNAPs.

To our knowledge, the first model of molecular motor
traffic was developed almost forty years ago by MacDonald,
Gibbs, and collaborators �16,17� in the context of ribosome
traffic. In the pioneering works �16,17�, as well as in most of
the extensions in recent years �18–26�, the details of molecu-
lar composition and architecture as well as the mecha-
nochemical cycles of the ribosomes were not taken into ac-
count. Instead, each ribosome was modeled as a hard rod; in
the special limit where the size of the rod coincides with the
lattice constant, this model reduces to the totally asymmetric
simple exclusion process �TASEP�, which is the simplest
model of interacting self-propelled particles. Very recently, a
more realistic model �10� of ribosome traffic has been devel-
oped by incorporating the essential steps in the mecha-
nochemical cycle of a ribosome during the elongation of the
protein. Traffic of some other families of motors have also
been modeled recently in the same spirit, i.e., by incorporat-
ing both the intramotor mechanochemistry and intermotor
steric interactions �11�.

III. MODEL

For the purpose of quantitative modeling, we simplify the
schematic picture of RNAP traffic shown in Fig. 1�a�. We
represent the DNA track for RNAP motors by a one-
dimensional lattice and each TEC by a rectangular box �see
Fig. 1�b��. Although the actual size of a TEC may be slightly
larger than that of the associated RNAP, from now onward,

in this paper we shall ignore this size difference. In other
words, we assume that the size of the black box in Fig. 1�b�
is identical to that of a TEC as well as that of a RNAP motor.
We label the sites of the lattice by the integer index i �by
convention, from left to right�. The sites i=1 and i=L repre-
sent the start and stop sites, respectively. Each of the
remaining sites in between the start and stop sites
�i.e., 2� i�L−1� represents a single nucleotide on the DNA
template. The size of a single RNAP is such that each motor
can simultaneously cover r successive nucleotides on the
DNA template �usually, r is typically 30–35 base pairs, but in
Fig. 1, r=6�. According to our convention, the position of
each RNAP is denoted by the integer index of the lattice site
covered by the leftmost site of the RNAP. Thus, the allowed
range of the positions j of each RNAP is 1� j�L. The hard-
core steric interactions among the RNAPs are captured by
imposing the condition that no lattice site is allowed to be
covered simultaneously by more than one RNAP. Irrespec-
tive of the actual numerical value of r, each RNAP can move
forward or backward by only one site in each time step, if
demanded by its own mechanochemistry, provided the target
site is not already covered by any other RNAP. This is mo-
tivated by the fact that a RNAP must transcribe the succes-
sive nucleotides one by one.

The total number of RNAPs on the DNA template is de-
noted by the symbol N. Under periodic boundary conditions
�PBC�, N is independent of time whereas N is a fluctuating
time-dependent quantity if open boundary conditions �OBC�
are imposed on the system. Therefore, �=N /L is the number
density of the RNAPs. The coverage density is defined by
�cov=Nr /L=�r, which is the total fraction of the nucleotides
covered by all the RNAPs together. Under OBC, the number
density as well as the coverage density are, in general, fluc-
tuating quantities, but the average of these densities attains
time-independent values in the stationary state.

Our model is aimed at the elongation stage and is not
intended to describe the initiation and termination processes
in detail. Therefore, we represent initiation and termination
by the two parameters � and �, respectively. Whenever the
site i=1 on the DNA template is vacant, this site is allowed
to be occupied by a new RNAP with the probability � in the
time interval �t �in all our numerical calculations we take
�t=0.001 s�. Similarly, a RNAP bound to the site i=L is
allowed to detach from the template with the probability � in
the time interval �t. For convenience, we also define the
probabilities �� and �� for attachment and detachment, re-
spectively. Note that �� is related to � by the relation
�=1−exp�−���t�; �� is related to � by a similar relation.

Following Wang et al. �28�, we have a simplified descrip-
tion of the chemical �or conformational� states of each indi-
vidual RNAP. Since release of PPi is the rate limiting step in
the process of elongation of the mRNA transcript, we con-
sider only two effectively distinct chemical states of the
RNAP in each mechanochemical cycle during the elongation
stage. In the state labeled by the integer index 1 no PPi is
bound to the RNAP, whereas the PPi-bound state of the
RNAP is labeled by the index 2. The simplified scheme,
which captures the essential mechanochemical processes
during the mRNA transcript elongation, is shown in Fig. 2.
In this figure, �21

f , �11
f , and �22

f are the rates of polymeriza-
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tion of RNA in three different situations, namely, by the hy-
drolysis of nucleotides �i� on the RNAP, �ii� in solution
�while no PPi is bound to the RNAP�, and �iii� in solution,
while PPi is bound to the RNAP. The corresponding rates of
reverse transitions, which result in depolymerization of the
RNA, are denoted by the symbols �12

b , �11
b , and �22

b , respec-
tively. Finally, �21 and �12 are the rates of association and
dissociation, respectively, of PPi.

“Backtracking” and “hypertracking” of RNAP have been
observed in in vitro single-RNAP experiments �57,58�. The
effects of backtrackings on transcription have been investi-
gated recently by Voliotis et al. �38�. However, the model
used by Voliotis et al. �38� does not explicitly capture the
biochemical transitions of a RNAP during its enzymatic
cycle. Interestingly, it has been experimentally demonstrated
�39,40� that backtracking of a RNAP gets strongly sup-
pressed if there is another RNAP close behind it. Therefore,
we do not allow the possibility of backtracking in our model
as, except at extremely low densities of RNAPs, backtrack-
ings and hypertrackings are expected to be rare in RNAP
traffic.

Four different types of nucleotides are used by nature to
synthesize all DNA molecules. Sequence inhomogeneity can
lead to site-dependent rates of translocation of RNAP on its
track. In the context of TASEP, which is a special limit of our
model of RNAP traffic, effects of quenched random site-
dependent hopping rates �59–67� have been investigated ex-
tensively over the last decade. Moreover, Brownian motors
with quenched disorder �68–71� have also been studied. In
the same spirit, single molecular motors, which move on
DNA or RNA tracks, have been modeled assuming the
nucleotide sequence on the track to be random �72,73�.

However, to our knowledge, for the realistic inhomoge-
neous, but correlated sequences no analytical technique is
available at present for the calculation of the quantities of
our interest in this paper. In fact, the theoretical schemes
developed so far for single RNAPs �32,35�, which take into
account the actual sequence of the specific DNA track, are
implemented numerically. Even in the context of earlier
models of protein synthesis, almost all the theoretical results
on the effects of sequence inhomogeneities have been ob-
tained by computer simulations �10,26�. Therefore, for the
sake of ease of analytical calculations, throughout this paper
we have ignored the sequence inhomogeneity of the nucle-
otides on the DNA template and, instead, assumed a hypo-
thetical homogeneous sequence.

Let P	�i , t� denote the probability that there is a RNAP at
the spatial position i and in the chemical state 	 at time t;
	=1 refers to the state in which the RNAP is not bound to
any PPi, whereas 	=2 corresponds to the state with bound
PPi. Note that P�i�=�	=1

2 P	�i� is the probability of finding a
RNAP at the site i, irrespective of its chemical state. Simi-
larly, P	=�iP	�i� is the probability of finding a RNAP in the
chemical state 	 irrespective of its spatial position. We de-
scribe the stochastic dynamics of the system in terms of mas-
ter equations for P	�i , t�. Most of our analytical results have
been derived using the mean-field approximation.

In order to test the range of validity of our approximate
analytical calculations, we have also carried out extensive
computer simulations �Monte Carlo simulations� of our
model. In these simulations, we have used random sequential
updating which appropriately corresponds to the master
equations used in our analytical formalisms. In each run of
the simulations, the system was allowed to reach steady state
in the first one million time steps and the data for the steady
state were collected over the next eight million time steps.
The entire process was repeated with a large number of dif-
ferent initial conditions and, finally, average steady-state flux
was computed. We have observed that the qualitative fea-
tures of our results do not depend significantly on the actual
numerical value of r as long as it is sufficiently larger than
unity. Therefore, unless stated otherwise, all the numerical
results plotted in this paper have been obtained taking r
=10. In our test simulation runs, we did not find any signifi-
cant variations in the data for L
1000. Therefore, almost all
the simulation data reported here were generated in our pro-
duction runs by keeping L fixed at L=1000.

IV. RNAP TRAFFIC UNDER PERIODIC
BOUNDARY CONDITIONS

We always denote the spatial position of a RNAP on the
DNA track by the integer index of the site covered by the left
edge of the RNAP �i.e., the leftmost of the r successive sites
representing the RNAP�. Thus, in our terminology, a site is
occupied by a RNAP if it coincides with the leftmost of the
r sites representing that RNAP while the next r−1 sites on its
right are said to be covered by the same RNAP.

Let P�i��j� be the conditional probability that, given a
RNAP at site i, there is another RNAP at site j; the under-
lined index i within the bracket denotes the site whose occu-
pational status is given. Obviously, Q�i��j� is the conditional
probability that, given a RNAP at site i, site j is empty; the
meaning of the underlined index i within the bracket is the
same as in the case of P. Note that if site i is given to be
occupied by one RNAP, the site i−1 can be covered by an-
other RNAP if, and only if, the site i−r is also occupied.

A. Mean-field theory under periodic
boundary conditions

In the mean-field approximation, the master equations for
P	�i , t� are given by

FIG. 2. A schematic representation of the mechanochemical
cycle of each RNAP in our model in the elongation stage. No PPi is
bound to the RNAP in the state 1 whereas the PPi-bound state of the
RNAP is labeled by the index 2.
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dP1�i,t�
dt

= �11
b P1�i + 1,t�Q�i + 1 − r�i + 1�

+ �11
f P1�i − 1,t�Q�i − 1�i − 1 + r�

+ �12
b P2�i + 1,t�Q�i + 1 − r�i + 1� + �12P2�i,t�

− �21P1�i,t� − �11
f P1�i,t�Q�i��i + r�

− �21
f P1�i,t�Q�i��i + r� − �11

b P1�i,t�Q�i − r�i�� ,

�2�

dP2�i,t�
dt

= �22
b P2�i + 1,t�Q�i + 1 − r�i + 1�

+ �22
f P2�i − 1,t�Q�i − 1�i − 1 + r�

+ �21
f P1�i − 1,t�Q�i − 1�i − 1 + r� + �21P1�i,t�

− �12P2�i,t� − �22
f P2�i,t�Q�i��i + r�

− �12
b P2�i,t�Q�i − r�i�� − �22

b P2�i,t�Q�i − r�i�� .

�3�

Note that the two equations �2� and �3� are not independent
of each other because of the condition

P�i� = P1�i� + P2�i� =
N

L
= � . �4�

For our numerical calculations, we choose the same set of
rate constants which Wang et al. �28� extracted from empiri-
cal data; these are as follows:

�21
f = �21

f0�NTP�, with �21
f0 = 106 M−1 s−1,

�11
f = �11

f0�NMP�, with �11
f0 = 46.6 M−1 s−1,

�22
f = �22

f0�NMP�, with �22
f0 = 0.31 M−1 s−1,

�21 = �21
0 �PPi�, with �21

0 = 106 M−1 s−1,

�12 = 31.4 s−1,

�12
b = 0.21 s−1,

�11
b = 9.4 s−1,

�22
b = 0.063 s−1, �5�

where NMP refers to nucleoside monophosphate. Compared
to Basu and Chowdhury’s model �10� of ribosome-driven
protein synthesis, our model of RNAP-driven mRNA synthe-
sis involves fewer chemical states and, hence, fewer master
equations. In fact, the number of chemical states in this
model is equal to those in an earlier model of traffic of
single-headed kinesin motors �11,12� where the

two chemical states, however, have totally different physical
interpretations. But, the number of terms involved in each of
the master equations �2� and �3� are much larger than those
in Refs. �10–12�.

B. Steady-state properties under periodic boundary conditions

In the steady state all P	�i , t� become independent of
time. Moreover, because of the PBC, these probabilities are
also independent of the site index i in the steady state of the
system. Therefore, from Bayes’s theorem,

P�i��i + r� =
P�i�i + r�P�i + r�

P�i�
= P�i�i + r� , �6�

and hence,

Q�i��i + r� = Q�i�i + r� . �7�

We calculate Q�i� � i+r� along the same line as sketched in
Ref. �10�. Given that the site i is occupied, the conditional
probability that the site i+r is also occupied is given by

P�i��i + r� =
N − 1

L + N − Nr − 1
. �8�

Thus, in the limit L→� and N→�, while keeping �=N /L
fixed, we get

Q�i��i + r� = Q�i�i + r� =
1 − �r

1 + � − �r
. �9�

Note that Q vanishes at �=1 /r, because the entire stretch of
the DNA template between the points of initiation and termi-
nation of transcription is fully covered by the RNAPs at
�r=�cov=1.

Solving Eq. �2�, together with Eq. �4� in the steady state
under PBC, we get

P1 = ��12 + �12
b Q

�� + �↔Q
�� ,

P2 = ��21 + �21
f Q

�� + �↔Q
�� , �10�

where

�� = �12 + �21,

�↔ = �21
f + �12

b , �11�

and Q is given by Eq. �9�.
In the steady state under PBC, the flux of the RNAPs is

given by

J = ��11
f + �21

f �P1Q�i��i + r� + �22
f P2Q�i��i + r�

− �11
b P1Q�i − r�i�� − ��22

b + �12
b �P2Q�i − r�i�� . �12�

Hence,

J = �1P1Q + �2P2Q = ��1P1 + �2P2�� 1 − �cov

1 + � − �cov
� ,

�13�
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where

�1 = �11
f + �21

f − �11
b , �14�

�2 = �22
f − �12

b − �22
b , �15�

are two effective forward hopping rates from the states 1 and
2, respectively, while Q is given by Eq. �9�. Since P1=0
= P2 at �=0 the corresponding flux J vanishes. J also van-
ishes at �cov=1 as Q vanishes at �r=1.

Our mean-field estimate �13� of flux J is plotted against
the coverage density �cov in Fig. 3 for �a� three different
values of �NTP� at �PPi�=1 	M, and �b� three different val-
ues of �PPi� at �NTP�=1 mM. The qualitative features of
these fundamental diagrams are similar to those observed
earlier �10� in the context of ribosomal traffic during protein
synthesis from a mRNA template. The most notable feature
of these diagrams is their asymmetric shape. This shape of
the fundamental diagram is in sharp contrast to the symmetry
of the fundamental diagram of TASEP about �=1 /2. The
physical reason for the asymmetric shape of the fundamental
diagram in Fig. 3 is the same as in ribosomal traffic �10�.

The rate constant �21
f is higher at higher concentrations of

NTP and gives rise to higher flux, i.e., higher rate of tran-
scriptional output �see Fig. 3�. Conversely, higher concentra-
tion of PPi opposes the release of PPi thereby slowing down
the overall rate of transcription. Moreover, at higher concen-
trations of NTP each RNAP attempts forward stepping more
frequently; while making these attempts, it feels stronger
hindrance at higher densities of RNAPs. Therefore, the de-
viation of the mean-field estimates of flux from the corre-
sponding simulation data is larger at higher NTP concentra-
tion and at higher coverage density of the RNAPs. Similarly,
forward stepping of a RNAP is less suppressed when the PPi
concentration in the solution is lower; therefore, stronger de-
viation of the mean-field estimates of flux from the corre-
sponding simulation data is observed at lower PPi concentra-
tion and higher RNAP densities.

V. RESULTS UNDER OPEN BOUNDARY CONDITIONS

Open boundary conditions are more realistic than PBC for
describing RNAP traffic during transcription. A fresh RNAP
can attach with the site i=1 only in the state 1 �i.e., no PPi is
bound to it�. In this section we make a further assumption for
simplifying the equations. We replace the conditional prob-
ability Q�i� � j�, by the probability Q�j� that site j is empty,
irrespective of the state of occupation of any other site. Note
that the probability of finding a “hole” at j �i.e., the probabil-
ity that the site j is not “covered” by any RNAP� is given by
1−�s=0

r−1P�j−s�.

A. Mean-field theory under open boundary conditions

Under mean-field approximation, the master equations for
the probabilities are now given by

dP1�1,t�
dt

= ���1 − �
s=1

r

P�s�� + �11
b P1�2,t� + �12

b P2�2,t� + �12P2�1,t� − �21P1�1,t�

− ��11
f + �21

f �P1�1,t�	 1 − �
s=1

r

P�1 + s�

1 − �
s=1

r

P�1 + s� + P�1 + r�
 , �16�
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FIG. 3. The steady-state flux of the RNAPs, under periodic
boundary conditions, plotted as a function of the coverage density
�cov for �a� three different values of �NTP� at �PPi�=1 	M, and �b�
three different values of �PPi� at �NTP�=1 mM. The lines corre-
spond to our mean-field theoretic predictions whereas the discrete
data points have been obtained from computer simulations.
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dP1�i,t�
dt

= ��11
b P1�i + 1,t� + �12

b P2�i + 1,t��	 1 − �
s=1

r

P�i + 1 − s�

1 − �
s=1

r

P�i + 1 − s� + P�i + 1 − r�
 + �11
f P1�i − 1,t�

	 1 − �
s=1

r

P�i − 1 + s�

1 − �
s=1

r

P�i − 1 + s� + P�i − 1 + r�
 + �12P2�i,t� − �21P1�i,t� − ��11
f + �21

f �P1�i,t�	 1 − �
s=1

r

P�i + s�

1 − �
s=1

r

P�i + s� + P�i + r�

− �11

b P1�i,t�	 1 − �
s=1

r

P�i − s�

1 − �
s=1

r

P�i − s� + P�i − r�
 �i � L,i � 1� , �17�

dP1�L,t�
dt

= �11
f P1�L − 1,t�	 1 − �

s=1

r

P�L − 1 + s�

1 − �
s=1

r

P�L − 1 + s� + P�L − 1 + r�

+ �12P2�L,t� − �21P1�L,t� − �11

b P1�L,t�	 1 − �
s=1

r

P�L − s�

1 − �
s=1

r

P�L − s� + P�L − r�
 − ��P1�L,t� , �18�

dP2�i,t�
dt

= ��21
f P1�i − 1,t� + �22

f P2�i − 1,t��	 1 − �
s=1

r

P�i − 1 + s�

1 − �
s=1

r

P�i − 1 + s� + P�i − 1 + r�

+ �22

b P2�i + 1,t�	 1 − �
s=1

r

P�i + 1 − s�

1 − �
s=1

r

P�i + 1 − s� + P�i + 1 − r�

+ �21P1�i,t� − �12P2�i,t� − �22

f P2�i,t�	 1 − �
s=1

r

P�i + s�

1 − �
s=1

r

P�i + s� + P�i + r�

− ��12

b + �22
b �P2�i,t�	 1 − �

s=1

r

P�i − s�

1 − �
s=1

r

P�i − s� + P�i − r�
 �i � L� , �19�
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dP2�L,t�
dt

= ��21
f P1�L − 1,t� + �22

f P2�L − 1,t��	 1 − �
s=1

r

P�L − 1 + s�

1 − �
s=1

r

P�L − 1 + s� + P�L − 1 + r�

+ �21P1�L,t� − �12P2�L,t� − ��12

b + �22
b �P2�L,t�	 1 − �

s=1

r

P�L − s�

1 − �
s=1

r

P�L − s� + P�L − r�
 − ��P2�L,t� . �20�

B. Steady-state properties under open boundary conditions

Using these mean-field equations �16�–�20� in the steady
state, we have numerically calculated our theoretical esti-
mates of the flux. These mean-field theoretic estimates are
plotted as functions of the rate constants �� and �21

f , respec-
tively, in Figs. 4�a� and 4�b�. In order to test the level of
accuracy of these approximate theoretical predictions, we
have compared these results with the corresponding numeri-
cal data obtained from our direct computer simulations of the
model under open boundary conditions. We have also com-
puted the average density profiles and plotted these profiles
for three different values of �� and three different values of
�21

f in the insets of Figs. 4�a� and 4�b�, respectively.
The flux increases monotonically with increasing �� as

well as with increasing �21
f and, eventually, saturates in both

the cases. This trend of variation of flux is accompanied by a
monotonic rise of the average density profile of the RNAPs
in Fig. 4�a� and with a monotonic fall of the average density
profile in Fig. 4�b�. A comparison of these qualitative fea-
tures of the variation of flux and density profiles with those
in ribosome traffic �10� indicates a transition from the low-
density phase to the maximal current phase in Fig. 4�a� and
from the high-density phase to the maximal current phase in
Fig. 4�b� �10,74�.

VI. RNAP-TO-RNAP FLUCTUATIONS
AND TRANSCRIPTIONAL NOISE

The distribution P̃T of run times T is a measure of the
RNAP-to-RNAP fluctuations in the rates of transcription.
This distribution, obtained from computer simulations of our
model, is plotted in Fig. 5�a� for two different values of the

parameter �21
f . The Gaussian fit to the distribution P̃T is con-

sistent with the Gaussian distributions of the “delay times”
obtained by Morelli and Jülicher �75� in the limit of a suffi-
ciently large number of intermediate steps. Gaussian distri-
butions of the speeds of the RNAPs were observed by Tolic-
Norrelykke et al. �76� in their in vitro experiments. Although
this conclusion in Ref. �76� was based on the assumption of
uniform speed of the RNAPs during the elongation stage,
what was actually observed in their experiments was the
Gaussian distribution of the run times; this is certainly con-
sistent with our theoretical result.

We define the standard deviation, i.e., the root-mean-
square deviations

�T = ��T − �T��2�1/2 �21�

of run times T from their mean, as a measure of the tran-
scriptional noise arising from the stochastic mechanochemi-
cal cycles of the RNAPs. �T is plotted as a function of �21

f in
the inset of Fig. 5�a�. Since �21

f =�21
f0�NTP�, the inset of Fig.

5�a� clearly establishes that the transcriptional noise �T falls
exponentially with increasing concentration of NTP. This
trend of variation is consistent with the well known fact that
the fluctuations in the rates of chemical synthesis are stron-
ger when the concentrations of reactants are lower.

The distribution P� of time headways � is a measure of
the fluctuations in the time interval between the completion
of the polymerization of successive mRNA transcripts. This
distribution, also obtained from computer simulations of our
model, is plotted in Fig. 5�b� for the same values of the �21

f

as those used in Fig. 5�a�. The best fit to the numerical data
for P� is of the general form

P� = C��e−	�, �22�

with positive constants 	 and �, C being the normalization
constant. The form �22� is consistent with the gamma distri-
bution that is expected for the time headways at sufficiently
low densities.

We define

�� = ��� − ����2�1/2 �23�

as a measure of the fluctuations in the time headways. In the
inset of Fig. 5�b� we plot �� as a function of �21

f ; the best fit
to this curve is an exponential.

In the limit in which �12→� and all other rate constants,
except �21

f =q, vanish, our model reduces to TASEP if simul-
taneously r→1. In this limit of our model P� is expected to
be well approximated by the exact expression for TASEP
with parallel updating �77,78� as follows:
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P� =  qy

� − y
��1 − �qy/���t−1

+  qy

�1 − �� − y
��1 − �qy/�1 − ����t−1

−  qy

� − y
+

qy

�1 − �� − y
�pt−1 − q2�t − 1�pt−2, �24�

where

y =
1

2q
�1 − �1 − 4q��1 − ��� . �25�

Finally, the transcriptional noise increases, instead of de-
creasing, with the increase of PPi concentration �see Fig. 6�;
in other words, an increase of PPi concentration not only
slows down the average rate of RNA synthesis, but also
makes transcription more noisy.

VII. IMPLICATIONS FOR EXPERIMENTS

Almost all the quantitative theories of RNAP developed
so far �27–37� were intended to account for the mecha-
nochemistry of a single RNAP. The interactions of RNAPs in
transcriptional interference �79� is a well known phenom-
enon and it has also been modeled quantitatively �42�. How-
ever, instead of studying interactions of RNAPs during the
transcription of different genes �39–42�, we have modeled
the steric interactions of RNAPs which are simultaneously
involved in the transcription of the same gene.

The possibility of steric interactions of RNAPs during
their trafficlike collective movements along the same DNA
template has been known for a long time �80,81�. The
“Christmas tree”-like structures �82,83� observed in electron
microscopic studies of eukaryotic transcription arise from
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FIG. 4. The steady-state flux of the RNAPs, under open bound-
ary conditions, plotted as a function of �a� ��, for three sets of
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FIG. 5. �Color online� The distributions of the run times and
time headways in our model, under open boundary conditions, plot-
ted in �a� and �b�, respectively, for two different values of �21

f . The
discrete data points have been obtained from computer simulations.
The curves fitted to these data points are drawn with the lines. The
variation of the standard deviations of the distributions of run times
and time headways with the increase of the parameter �21

f are
shown in the insets; the discrete points have been obtained from the
simulation data and the best fit curve through these points has been
drawn by a line.
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simultaneous transcription of the same gene by many
RNAPs. These structures also have a strong similarity with
the dense population of the nascent mRNA transcripts ob-
served all along the loops of the DNA strands in the electron
micrographs of lampbrush chromosomes �84,85�.

Our theory predicts not only the average rate of synthesis
of RNA, but also two different measures of fluctuations in
the process of transcription. In most of the earlier experimen-
tal investigations of transcriptional noise, the distributions of
the sizes and frequencies of the “burst” of the transcriptional
activity were recorded. However, size and frequency of the
bursts depend on the temporal resolution used for sorting the
time series of the events into separate bursts �see, for ex-
ample, Fig. 1 of Ref. �86��. Therefore, in principle, the sta-
tistics of reported distributions of burst sizes and frequencies
may change with the change of time resolution selected for
such sorting. Instead, in this paper, we have introduced dif-

ferent measures of the stochasticity in transcriptional activity
which do not require any sorting of this kind.

In recent years sophisticated optical techniques have been
developed for single mRNA imaging �87–90�. We believe
that our theoretical predictions can be tested most appropri-
ately by carrying out in vitro experiments with either fluo-
rescently labeled RNAPs �76� or using techniques for tag-
ging the nascent mRNA with fluorescent probes �47,87� or
using techniques where fluorescent probes can quickly bind
with the nascent mRNA as soon as it is released by the
RNAP �48�. Comparison of our theoretical predictions on the
distributions of run times and time headways require the col-
lection of appropriate data. In our theory, the run time in-
cludes the time spent by a RNAP in the elongation stage as
well as in the termination stage, but does not include the time
spent in the initiation stage. Therefore, in experiments, run
times of the RNAPs should be measured only from the in-
stant when the TEC gets stabilized; a technique used in Ref.
�76� may be utilized for this purpose.

VIII. SUMMARY AND CONCLUSIONS

Surprisingly, no attempt has been made in the past to de-
velop mathematical models for RNAP traffic where tran-
scription of a single gene is carried out simultaneously by a
stream of RNAPs closely spaced on the same DNA template.
To our knowledge, the model developed in this paper is the
first attempt to capture inter-RNAP interactions in a model
where the mechanochemical cycles of each individual RNAP
in the elongation stage are also incorporated, albeit in a sim-
plified manner. In analogy with vehicular traffic �44�, we
have defined the flux for RNAP traffic; the RNAP flux is also
the total rate of synthesis of RNA. We have calculated the
average rates of RNA synthesis analytically under mean-field
approximation.

Drawing analogies with vehicular traffic, we have defined
two quantities whose distributions serve as measures of
RNAP-to-RNAP fluctuations in the transcription of a single
gene. We have calculated these distributions numerically by
carrying out computer simulations of our model. The widths
of these distributions �more precisely, root-mean-square fluc-
tuations� can be treated as good measures of the strength of
“transcriptional noise.” We have investigated how the level
of “transcriptional noise” depends on some of the model pa-
rameters which can be varied in a controlled manner in labo-
ratory experiments. A similar analysis of “translational
noise,” which arises from ribosome-to-ribosome fluctuations
during protein synthesis from the same mRNA template, will
be reported elsewhere �91�. The inhomogeneous sequence of
nucleotides on the DNA template can lead to stronger fluc-
tuations thereby making additional contributions to the levels
of transcriptional noise. The “intrinsic noise” studied in this
paper arises from the stochastic nature of the steps of the
mechanochemical cycle of individual RNAPs. Although the
noise level gets affected by the interactions of the RNAPs,
this noise remains relevant even when the gene is transcribed
by one RNAP at a time. We have made concrete suggestions
as to the experimental systems and techniques which, in
principle, can be used to test our theoretical predictions.
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FIG. 6. �Color online� The distributions of the run times and
time headways in our model, under open boundary conditions, plot-
ted in �a� and �b�, respectively, for two different values of �21. The
discrete data points have been obtained from computer simulations.
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